An Interactive Complex
Hermitian-Lanczos Eigensolver

Osni A. Marques

CERFACS Report TR/PA/94/16



An Interactive Complex Hermitian-Lanczos Eigensolver

Osni A. Marques'

August 1994

Abstract

This report describes a Lanczos algorithm based code intended for the solution of
eigenproblems involving complex Hermitian matrices. The code works in an interactive
way with the user, who has access to intermediate computed results (the convergence
history) and can thus define specialized external control instructions. In addition, the
Hermitian matrix is not required internally in the package for the generation of the
Lanczos vectors basis: each time a matrix-vector computation has to be performed
the control is returned to the user. The fundamentals of the technique are first re-
viewed, including a comparison between the reduced problem obtained by the adopted
formulation and a block one, and the strategy employed to preserve the orthogonality
among the vectors of the basis generated. Then, some applications and conclusions
are presented. Finally, a user’s guide for the code, called HLZPACK (an acronym for
Hermitian Lanczos Package), is given in the Appendix.
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1 Introduction

A large number of applications require the determination of non-trivial solutions for a
problem of the type
Az = Az (1)

where A is an n X n» matrix, z is a n-vector and A is a scalar. When A is sparse and a few
pairs of eigenvalues A and eigenvectors x are sought, Krylov subspace based methods have
been shown to be very suited for their computation. For a given non-null vector ¢, a Krylov
subspace is defined as [8, 14]

K(A,q.5) = span(q, Ag,...A""'q). (2)

The vectors of such a subspace are similar to those generated by the power method [8, 14]
and as j increases convergence is achieved for the eigenvector with predominant components
in ¢. However, a more general approach consists in generating a basis for K(A4, ¢, j),in order
to achieve convergence for more solutions. This is the governing idea of the Lanczos [11, 14]
and Arnoldi [1, 8] methods, which start with a vector ¢; and at each step j add a new
vector, ¢;, to the basis. The projection of the original problem (1) onto the basis leads to
a small problem, either involving a tridiagonal (one-vector or basic Lanczos) or an upper
Hessenberg matrix (one-vector or basic Arnoldi), which are easier to solve. The solutions
required for the large eigenproblem are then recovered through a Rayleigh-Ritz procedure.
In a block Krylov based strategy (block Lanczos or Arnoldi) ¢; is replaced by a full rank nxp
matrix, leading to a block tridiagonal or block Hessenberg matrix and better convergence
properties in the case of clustered or multiple eigenvalues [8, 9, 14, 16].

Let us consider now a matrix defined as A = P + 14, where P is real and symmetric, Z
is real (# 0) and skew symmetrict, and i denotes the complex unit (v/—1). For this type
of matrix, all associated eigenvalues are real while the eigenvectors are complex [18]. In
addition, if (A, z) corresponds to an eigenpair with 2*z = 13, so does (), £z) providing ¢ is a
complex number satisfying £ = 17. When P = 0, A is said to be pure imaginary Hermitian,
and its eigensolutions appear as pairs (A, z) and (=X, z), with one A = 0 for an odd value
of n. Gupta and Lawson [10, 12], for instance, developed a block Lanczos code for such a kind
of problem, intended for the analysis of spinning structures like helicopters and turbines.
They showed that A can be projected onto a real basis without damaging the convergence
properties. The complex arithmetic is “forced” to be only in the reduced problem. When
P # 0, the resulting matrix A is said to be general Hermitian (A = A*), which will
be referred to as H henceforth. Such matrices appear, for example, in electromagnetism
applications and in the spectral analysis of nonsymmetric matrices (within a singular value
decomposition strategy). Then, if the one-vector Lanczos method is employed, the basis
generated is complex but the reduced problem corresponds to a real symmetric tridiagonal
matrix. This contrasts with the block Lanczos method, which leads to a block tridiagonal
complex Hermitian matrix. It should be noted that Cullum and Willoughby [5] have already
developed a Fortran code using the real formulation for the reduced problem. Their code,
however, uses some constructions and complex functions that are not standard. In addition,
it somewhat restricts the user to specific data structures.
Yz =-7".

Sthe * denotes the conjugate transpose, i.e. z* =

zT,

é¢ =1 defines a circle of unitary radius.



Therefore, the purpose of this work is to describe a “friendly” tool for the determination of
some of the extreme solutions of eigenproblems associated with complex Hermitian matrices.
A single-vector Lanczos approach is used, which has the characteristics mentioned above.
The main goal is to give to the user the possibility of using the code as a function, in an
interactive fashion (reverse communication strategy). In terms of user interface, the features
of the proposed “Hermitian-Lanczos” code are thus the following:

o the user has access to intermediate results and to the convergence history, which allows
the definition of specific control instructions outside the package.

e the Hermitian matrix is not required internally in the code: until convergence for the
required solutions is reached, each time a computation involving H and a given vector
¢; has to be performed, the control is returned to the user (and such a computation
can be then specialized for particular applications).

In the following sections, the fundamentals of the Hermitian-Lanczos code are first de-
scribed. We include a discussion about the reduced problem used here and the one obtained
by a block formulation. Next we show the strategy adopted to maintain the basis of vectors
with a proper level of orthogonality. Then, four examples are given in order to illustrate
the applicability of the code: a small matrix and the convergence pattern using a direct and
an inverted operator (H and H~!), the evaluation of a spectral portrait of a nonsymmetric
matrix (with a singular value decomposition scheme), and the determination of some singu-
lar values of a complex nonsymmetric matrix using an augmented matrix strategy. Finally,
some conclusions are presented, as well as a user’s guide for the package.

2 Fundamentals

The Gram-Schmidt orthonormalization process could be applied to all vectors of the Krylov
subspace, in the natural order ¢, Aq, A%q, ..., so as to construct a basis for it. However, one
can show that for the orthonormalization of the k-th vector it suffices to take into account
only the two previous orthonormalized vectors. Moreover, instead of generating the Krylov
subspace, the basis can be built vector by vector, which is one of the characteristics of the
Lanczos method [14]. Considering the eigenproblem

Hz = Az, (3)

the basis generation process starting from a vector ¢ is summarized in Table 1. In that
table, the n-vectors ¢; and r; are complex while the scalars a; and 3; are real (their nature
will be discussed in the next section).

After 7 steps the vectors generated can be arranged as

sz[m G2 - G5 (4)

satisfying
QjQ; =1 (5)



Table 1: The Lanczos basis generation process.
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QHQ; =T; (6)
where ) )
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Therefore, the operations listed in Table 1 lead to a partial tridiagonalization of H. Defining
Q,, as the basis that completely tridiagonalizes H, i.e., j = n in relation (6), the truncated
scheme is depicted in Figure 1. In terms of the Rayleigh-Ritz approximation, the projection
of the eigenproblem (3) onto the trial basis Q; is the symmetric tridiagonal matrix 7’;, with
an approximate solution (;\, &) given by

A=6 (8)
and
&=Q;s (9)
with (6;,s;), 1 <1 < 7, satisfying the reduced eigenproblem
T;s; = 510y, (10)

which can be solved by means of Givens rotations or a bisection method [18], for example,
and 2*% = 1 providing SZTS] = 1. Convergence is usually achieved for j < n and the accuracy
of (A, %) can be estimated a priori, through the residual (see Figure 1)

~ NN ! !
[Hé - A&|| = | Q;(T; — b1s1) + rjel sil| = ||rjel so]| = |BiaL] = Y (11)
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Figure 1: The truncated recurrence.
where ||.|| denotes the Euclidian norm, e; is the last column of the identity matrix of order 7,

and sgl) is the bottom element of the eigenvector s;. Then, the monitoring of ﬁ](«l) allows the
identification of converged solutions, by comparing it with a specified tolerance, and the
stopping of the basis generation process. However, a backward error approach gives more
reliable results, i.e., an approximate eigenpair should satisfy

P U]
lHz — Az B
= < tol. 12
gl 1] 12

In fact, in the present implementation, ﬁ](«l) is compared to tol x ||H||, where tol is set to
the square root of the arithmetic precision and ||H|| is specified by the user. If ||H|| is set
to zero on input, it will be approximated by the largest eigenvalue of 7’; in absolute value.

3 The Reduced Problem

In this section, we examine the nature of the matrix 7; in the reduced problem (10).
Equating first the j-th column of the matrices shown in Figure 1,
rj=Haqj — qio; — qi-15;, (13)

and multiplying this resulting relation by ¢ we get

ari = G HG — 405 — ¢ 41585
However, due to the Gram-Schmidt orthonormalization process (q;qj_l = 0) and in order
to obtain ¢jr; =0,
aj = q;Hg;.
Furthermore,
aj=qHe =q Mg =(Hey)" =aj

and thus a; is a real number. Then, since r; = ¢;418;41 and ¢}, ¢j41 = 1 for orthonormality
conditions,

2 ko
Bipr = 15755

which is also a real number.



Therefore, the one-vector approach used in our implementation yields a real symmetric
tridiagonal matrix as defined in (7). For the solution of the associated reduced eigenproblem
a QL method based subroutine, IMTQL, available in EISPACK [7], has been used. Actually,
that subroutine has been modified to compute only the bottom entries of each eigenvector of
T;s; = s;0; when the residuals are computed by means of relation (11). The full eigenvectors
s; are evaluated only for the computation of the aproximations Z.

On the other hand, in a block strategy the vector ¢; is replaced by a n x p matrix @;, r; by
a n X p matrix R;, a; by a p X p matrix A;, and 3,41 by a p X p matrix B;;, . Following
the same rules of the above paragraph it follows that

Aj = QiHQ;

and
AP = (QTHQ;) = QTH*Q; = QTHQ; = A,

so that A; is Hermitian. Now, in order to obtain ()41, one needs to factor R; as
Rj = Qjn1Bjn

with 7,1Q;+1 = I and B;ji; upper triangular, its diagonal coefficients being real (nor-
malizing factors) and the others generally complex (orthogonalizing factors). Then, the
projection of H corresponds to the following tridiagonal matrix of dimension 7 X p:

[ A, B3
B, A; B3
Tp = Bs As
. B}f
I B; A;
4 The Partial Reorthogonalization
Let us consider the product
Me,j = Mjk = 4k (14)
which corresponds to the coefficients of the matrix Q; Q;. With infinite precision arithmetic
ng; =1 for k=7 1
{mw:o for k#j (15)

However, after 7 steps in a finite precision arithmetic relations (5) and (15) are not satisfied,
so that ||[I — Q3Q;[| # 0, and redundant copies of eigenpairs tend to emerge. This loss of
orthogonality is dictated by the introduction of roundoff errors in the operations of Table 1,
which can be represented by the introduction of a correction term, f;, in equation (13).
It is also related with the convergence of a pair (A,#) and therefore with the eigenvalue
distribution of the associated problem [14].



In order to prevent the loss of orthogonality one can apply a full reorthogonalization, instead
of using only the two previous vectors computed in the basis generation process. However,
such a scheme would strongly increase the number of operations for large values of 5 and n.
On the other hand, a preventive measure can be used to keep the orthogonality within
a certain level, say ||[I — Q%Q;|| < /¢, for example, where ¢ is the arithmetic precision.
The basic idea is to monitor the level of orthogonality among r; and the vectors of the
basis. Then, ignoring for simplicity the roundoff errors introduced in equation (13) and
pre-multiplying it by ¢ (the k-th computed vector),

GHa; = 45418541 + qigiog + Giqj-155,
and considering the relation (14),
G HG = Mk g1 8541 + Mo+ nk 18- (16)
Rewriting now the equation (13) for the k-th step and pre-multiplying it by q;, we get
4 HE = 45 Qe Berr + ¢ ek + ¢ qr—1 5k,

and considering the relation (14) we obtain

GHGE = M k+18r+1 + M5 k0% + 75,8-1 5% (17)

From relations (16) and (17), since g;Hq; = ¢;Haqr and ng; = 1k,

Mi+1k0i+1 = Njg1 B + (o = @)k + 0jk—158% = nj-1,60;,
and taking norms,

1
Bi+1

Mj+1k < (k418541 + (k] + [ )i + 1jk—15% + 1j-1,605], (18)
which can be used to estimate the level of orthogonality between ¢;11 and ¢, 1 <k < j
(clearly, 7;41,; & ¢). All the information required for that is provided by the algorithm at no
cost. It should be noted that this strategy was first developed for symmetric matrices [17],
with the reorthogonalization being applied only to the vectors with corresponding values of 5
(the index k) above a specified tolerance. However, in the present implementation whenever
one 7;41,% becomes larger than /¢, a full reorthogonalization is applied [13]. Then, all 7’s
are set to y/ne and the updating of relation (18) reinitialized. Although it might be seen as
a conservative scheme, a stronger level of orthogonality is assured for the subsequent steps
of the basis generation process.

5 Applications

In this section, we examine 4 different examples in order to illustrate the applicability
of the technique described in the previous sections. For the first two examples a small
Hermitian matrix has been used: the objective is to show the convergence pattern using H
and H~' (the direct and the inverted operator), since in this case the eigenvalues are



related by their reciprocals (i.e., the inverted spectrum) while the eigenvectors are the
same. In the third example the code is used to determine the smallest singular value of
a perturbed nonsymmetric matrix (related with an aeroelasticity analysis problem) as a
way to evaluate its spectral portrait. Finally, some singular values of a nonsymmetric
complex matrix (related with an application in electromagnetism) are computed using an
augmented problem strategy. For all cases, the starting vector was generated with random
entries, although such a vector can also be specified by the user.

Application 1. In this application, we examine the approximate eigenvalues obtained
with a basis of size 10 for a Hermitian matrix of dimension 30. The eigenvalue spectrum
of the matrix is depicted in Figure 2, so that its Fuclidian norm is equal to 60. The
approximations are listed in Table 2 in ascending order, as well as the associated residuals
defined by relation (11). We can see in that table that mainly the largest eigenvalues begin
to convergence, although their residuals are not yet small. On the other hand, there is
also some information related with the lower end of the eigenvalue spectrum. The pattern
observed is generally typical when a direct operator is employed.

Application 2. In this application, we examine the approximate eigenvalues obtained
with a basis of size 10 for the inverse of the matrix used in the first application. The
reciprocal of the approximations are listed in Table 3 in descending order, as well as the
associated residuals. We can see in that table that mainly the small eigenvalues begin to
convergence and the residuals are smaller when compared with those of the previous case,
although the multiplicity of the first eigenvalue has not yet been detected. On the other
hand, it should be noted that in practical applications the matrix does not need to be
inverted. If required, one can factor the matrix and then solve systems of equations for ¢;,
instead of multiplying by H, as indicated in Table 1.

Application 3. Many computations involving nonsymmetric matrices may fail in the
neighbourhood of singularities. This is basically related with the nonnormality of the ma-
trix, which can be expressed by the relation [|[ATA — AAT|| # 0. One way of studying
the “sensitivity” of a matrix consists in the introduction of small perturbations in the en-
tries of the matrix and then examining the resulting perturbed spectrum. The perturbed
spectrum can be analysed through the function ¥(z) = logo[||(A — 2I)7!|2]|A|2], where z
corresponds to a point in the complex plane and ||(A — 2I)7!||; to the largest singular
value of (A — zI)~!. However, it should be noted that this singular value is equivalent
to 1/v/Amin[(A — 2I)*(A — zI)], where A,;,, indicates the smallest eigenvalue. Therefore,
in this application we employ the Hermitian-Lanczos code to determine the spectral por-

trait (z) of a nonsymmetric matrix, i.e., to compute the small singular value for different
values of z. The idea is to run the code with the matrix (A — 21)*(A — z/) until the smallest
eigenvalue of the reduced problem reaches a small residual, which is examined outside the
code (some of the largest eigenvalues converge first). The matrix studied has dimension 135.
It results from a flutter analysis of an airplane and is labelled “Tolosa” [2, 3, 4]. The spectral
portrait obtained is shown in Figure 3, for 3721 values of z (mesh 60 x 60), in the piece of
the complex plane defined by the rectangle with vertices —50 + 1507 and 20 + 2007. In that
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Figure 2: The spectrum of the matrix for Application 1.

Table 2: Figenvalue approximations for Application 1.

IR
2.0032 | 0.5115
5.0980 | 3.7728
8.8429 | 2.9776
17.743 | 5.0323
28.342 | 6.3651
32.856 | 5.7594
46.019 | 5.1082
51.083 | 3.5776
56.881 | 2.3850
59.730 | 1.0282
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Table 3: Eigenvalue approximations for Application 2.

L ye | 6
53.642 | 3.5377E-03
30.440 | 8.6636E-03
14.940 | 2.1815E-02
8.2144 | 1.1494E-02
5.3617 | 3.7707E-02
4.0245 | 1.4200E-02
3.0032 | 9.0809E-03
2.2017 | 1.1154E-02
2.1017 | 1.2089E-02
2.0000 | 1.9530E-04
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figure, the vertical and horizontal axes give the complex and real parts of the plane, re-
spectively, and the light colours indicate large values of 1(z), whose maximum is 7.23. The
norm of the matrix, ||A]|2, is equal to 4.17 x 10t* and 95 steps were required, on average,
to reach a residual norm less than 1078 for each smallest eigenvalue, on each point z. With
this application, it is also possible to see the effects of the loss of orthogonality among the
vectors. Considering the point z = —50 + 1507, we have examined the level of orthogonality
between gs; (the vector computed at the 31st step) and the previous Lanczos vectors (thus
a basis of dimension 31). The Figure 4 shows the norm of the product ¢;¢s1, 1 < k < 31,
on a logarithmic scale: the dashed line (with circles) corresponds to the control of the or-
thogonality level as described in Section 4, and the continuous line (with *) corresponds
to no control. In the first case, 18 eigenvalues have already converged (with residuals less
than 10~!1), ranging from 5.2863E+07 to 1.7319E+09 (the largest one for the point z con-
sidered); in the second, spurious copies of the eigenvalues 1.3590E409, 1.5370E4+09 and
1.7319E+09 emerge. Actually, the convergence of solutions begins at the 18th step, which
is related with the “plateau” for the first 15 vectors (i.e., the loss of orthogonality). The
descent of the solid line in Figure 4 indicates, roughly, that the orthogonality is lost and
then “reestablished” after convergence.

Application 4. In the study of electromagnetic guided waves the electric and magnetic
fields, respectively E and H, considering a heterogeneous media and the harmonic case, are
given by the Maxwell equations [3, 15]

roighl +iwH =0
roigH —iwk =0
divg(pE) =10
divg(pH) =10

where ¢ is the complex unit, w the wave frequency, 3 a propagation constant, p the mag-
netic permeability and p the dielectric permittivity of the media. Those equations can be
discretized by means of a lagrangian finite element formulation. The admissible values of w
are then obtained as a function of 3, by solving an eigenvalue problem involving a complex
non-Hermitian matrix based on F or alternatively on H. We consider a matrix of the former
type, with dimension 105. Its eigenvalue spectrum is shown in Figure 5 and its singular
values are represented in Figure 6. In this application we use the Hermitian-Lanczos code
to estimate some singular values of the aforementioned matrix. The strategy employed
consists in applying the code to an augmented problem involving

0 4
o]

which is complex Hermitian and has eigenvalues appearing as pairs (—A, +A), whose mod-
ulus lead to the singular values of A [6]. Then, using a basis of size 60, the Table 4 lists the
largest 10 positive eigenvalues. We can see that some of the singular values are already well
represented. It is clear that for large values of n this is probably not the most efficient way
to determine all singular values (and vectors). However, such a procedure can be useful in
the computation of a few of them, with better numerical properties than the formulation
using A*A, whose conditioning is squared [8]. In addition, the matrix H is not explicitly
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spectral portrait of tolosa (min=4.86,max=7.23)
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Figure 3: The spectral portrait of Tolosa, ¥(z) = log[[|(A — 2I)71||2|| Al 2]-
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required, it suffices to keep A, of dimension n, and to supply the code with vectors

(1) (2)

q; Aq;
Hg; :H{ (2 }:{ e }

4q; 4q;

for an output vector ¢; of dimension 2n. Therefore, the algorithm generates a basis for a
Krylov subspace of the type

IC([ 0 A] {qw } j)_span({ gi" } { Agl? } {AA*q?)} { AA*AgY } )
* ? 2 ’ - 2 ’ « (1 9 « 2 [ % « (1 g see)e
A7 0 |7 g ¢ J LA [Tl amag® [T araag)
However, as previously suggested by Cullum and Willoughby [6], it is possible to set either
(1) (2)

¢, ' or q;’ to zero. Then, the tridiagonal matrix will have only zero diagonal entries and a
save both in numerical operations and storage can be obtained.

6 Conclusions

This work described a Lanczos algorithm based code intended for the determination of
some eigensolutions of complex Hermitian matrices. Omne of the main objectives in its
implementation was to provide an easy interface for the user. For this purpose, it is given
to the user access to intermediate results and to the convergence history, which allows
the definition of specific control instructions outside the package. Moreover, the matrix
to be analysed is not required internally in the code: until convergence for the solutions
required is reached, each time the product Hg; has to be computed for a given vector ¢;
(or alternatively the solution of a system of equations), the control is returned to the user.

On the other hand, all algebraic operations are carried out by means of BLAS kernels,
which helps in achieving portability and a performance enhancement on many computers.
Concerning the reorthogonalization strategy, it will ensure a level of orthogonality among
the vectors of about the machine precision, as can be seen in Figure 4. Actually, as the
basis size increases, more solutions converge and more orthogonalizations are required.
However, for some applications, the strategy could possibly be “relaxed” in some way to
allow [|[T — Q7Q;[| ~ /¢ and therefore save operations.

In the applications section, the possible utilization of the code was examined by means of
distinct study cases, including nonsymmetric real and complex matrices. Concerning the
determination of the singular values, we have shown that two different strategies can be
applied (a normal equation or an augmented matrix approach, in applications 3 and 4,
respectively), depending upon the type of the problem. In this particular, the evaluation of
spectral portraits using both of them is currently under investigation and will be subject of
following works.
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Figure 5: Application 4, spectrum of the matrix (n = 105).
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Figure 6: Application 4, singular values of the matrix (n = 105).

Table 4: Figenvalue approximations for Application 4.

‘ l ‘ value ‘ residual ‘
1] 9.9503 | 2.4343E-06
2 | 9.8330 | 1.7591E-05
3 19.6155 | 5.9013E-04
4 19.3978 | 1.7095E-02
51 9.3088 | 1.2024E-01
6 | 9.2248 | 1.0581E-01
71 9.0210 | 2.2758E-01
8 | 8.9008 | 2.4088E-01
9 | 8.7163 | 2.1847E-01

10 | 8.3504 | 2.5393E-01

13



References

[1]

[2]

[3]

[4]

[8]

[9]

[13]

[14]

[15]

W. E. Arnoldi. The Principle of Minimized Iterations in the Solution of the Matrix
Eigenvalue Problem. Quarterly of Applied Mathematics, IX:17-29, 1951.

T. Braconnier. The Arnoldi-Tchebycheff Algorithm for Solving Large Symmetric Eigen-
problems. Technical Report TR/PA/93/25, CERFACS, Toulouse, France, 1993.

T. Braconnier. Sur le Calcul des Valeurs Propres en Precision Finie. PhD thesis,
Université Henri Poincaré, Nancy I, Nancy, France, 1994.

F. Chatelin and V. Frayssé. Lecture Notes for the Workshop on Reliability of Com-
putations. Technical Report TR/PA/93/12, CERFACS, Toulouse, France, 1993. With
the collabor. of T. Braconnier.

J. Cullum and R. Willoughby. Lanczos Algorithms for Large Symmetric Figenvalue
Computations, volume I Theory, Il Programs. Birkhauser, Boston, USA, 1985.

J. Cullum, R. A. Willoughby, and M. Lake. A Lanczos Algorithm for Computing
Singular Values and Vectors of Large Matrices. STAM J. Sci. Stat. Comput., 4:197—
215, 1983.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz Figensystem
Routines: Fispack Guide Frtension, volume 51 of Lecture Notes in Computer Science.
Springer Verlag, Berlin, Germany, 1977.

G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University
Press, Baltimore, USA, third edition, 1996.

R. G. Grimes, J. G. Lewis, and H. D. Simon. A Shifted Block Lanczos Algorithm
for Solving Sparse Symmetric Eigenvalue Problems. Technical Report RNR-91-012,
Boeing Computer Services, Seattle, USA, 1991.

K. K. Gupta and C. L. Lawson. Development of a Block Lanczos Algorithm for Free
Vibration Analysis of Spinning Structures. Int. J. for Numer. Meth. in Fng., 26:1029-
1037, 1988.

C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators. J. of Res. of the Nat. Bur. of Stand., 45:255-282,
1950.

C. L. Lawson and K. K. Gupta. The Lanczos Algorithm for a Pure Imaginary Hermitian
Matrix. In M. G. Cox and S. Hammarling, editors, Reliable Numerical Computation,
pages 25-34. Clarendon Press, 1990.

B. Nour-Omid. The Lanczos Algorithm for Solution of Large Generalized Figenprob-
lem. In T. J. R. Hughes, editor, The Finite Element Method, pages 582-630, Englewood
Cliffs, USA, 1987. Prentice Hall International Editions.

B. N. Parlett. The Symmetric Figenvalue Problem. SIAM (Classics in Applied Math-
ematics), Philadelphia, USA, 1998.

C. Poirier. Guides d’Ondes Electromagnétiques Ouverts: Etude Mathématique et
Numérique. Fcoles des Ondes, INRIA, Rocquencourt, France, november 1993.

14



[16] J. A. Scott. An Arnoldi Code for Computing Selected Eigenvalues of Sparse, Real,
Unsymmetric Matrices. ACM Trans. Math. Softw., 21:432-475, 1995.

[17] H. D. Simon. The Lanczos Algorithm with Partial Reorthogonalization. Mathematics
of Computation, 42:115-142, 1984.

[18] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford,
England, 1965.

15



A User’s Guide

The Users’ Guide has been moved to a separate file in order to simplify eventual updatings.
Please check the directory doc in the hlzpack distribution. In case of trouble, send an
e-mail to osni@nersc.gov.
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